Unit 11: Climate Change

Lecture 2 Objectives:

E5.4A - Explain the natural mechanism of the greenhouse effect including comparisons of the major greenhouse gases (water vapor, carbon dioxide, methane, nitrous oxide, and ozone).

E5.4g - Compare and contrast the heat trapping mechanisms of the major greenhouse gases resulting from emissions (carbon dioxide, methane, nitrous oxide, fluorocarbons) as well as their abundance and heat trapping capacity.

The Greenhouse Effect

The greenhouse effect is the rise in temperature that the Earth experiences because certain gases in the atmosphere (water vapor, carbon dioxide, nitrous oxide, and methane, for example) trap energy from the sun. Without these gases, heat would escape back into space and Earth's average temperature would be about 60°F colder. Because of how they warm our world, these gases are referred to as greenhouse gases.

The main greenhouse gases

Greenhouse gases	Chemical formula	Pre-industrial concentration	Concentration in 1994	Atmospheric lifetime (years)***	Anthropogenic sources	Global warming potential (GWP) *
Carbon-dloxide	COS	278 000 ppbv	358 000 ppbv	Variable	Fossil fuel combustion Land use conversion Cement production	1
Methane	CH ₄	700 ppbv	1721 ppbv	12,2 +/- 3	Fossil fuels Rice paddies Waste dumps Livestock	21**
Nitrous oxide	N ₂ O	275 ppbv	311 ppbv	120	Fertilizer industrial processes combustion	310
CFC-12	CCI ₂ F ₂	0	0,503 ppbv	102	Liquid coolants. Foams	6200-7100 ****
HCFC-22	CHCIF ₂	0	0,105 ppbv	12,1	Liquid coolants	1300-1400 ****
Perfluoromethane	CF ₄	0	0,070 ppbv	50 000	Production of aluminium	6 500
Sulphur hexa-fluoride	SF ₆	0	0,032 ppbv	3 200	Dielectric fluid	23 900

Note: pptv= 1 part per frillion by volume; ppbv= 1 part per billion by volume, ppmv= 1 part per million by volume

^{*} GWP for 100 year time horizon. ** Includes indirect effects of troposphericozone production and stratospheric water vapour production. *** On page 15 of the IPCC SAR. No single lifetime for CO₂ can be defined because of the different rates of uptake by different sink processes.**** Net global warming potential (i.e., including the indirect effect due to ozone deptetion).

Heat Trapping Capacity

- Methane has 20 times carbon dioxide's heat trapping capacity per molecule.
- CFC molecule has about 20,000 times the heat-trapping power of a CO2 molecule.
- Halocarbons coolants (up to 11 000 x as heat trapping as CO2) AC and older appliances
- Nitrous oxides fertilizers from agriculture (310 x as heating trapping as CO2)