Unit 9: Severe Weather

Lecture 1

Objectives:

E4.3f - Describe how mountains, frontal wedging (including dry lines) convection, and convergence form clouds and precipitation.

E4.3g - Explain the process of adiabatic cooling and adiabatic temperature changes to the formation of clouds.

States of Water?

Three states of water :

 1)Liquid
 2)Solid
 3)Gas

 Evaporation – Change from a liquid to a gas
 Condensation – Change from a gas to a liquid.

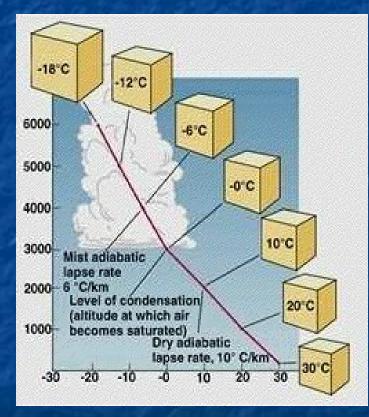
Evaporation

Humidity

Specific Humidity- Actual amount of water in the air.

Relative Humidity- compares actual amount with the maximum the air can hold at a given Temperature.

Condensation and Dew Point


- Dew Point The temperature at which saturation occurs.
- For water to condense, the air must be cooled below the dew point. Air may lose heat by:
 1)Contacting a colder surface.
 2) Radiating Heat
 3) mixing with cold air
 4) expanding when it rises.

Normal Lapse Rate

The higher you go up in the atmosphere the colder it gets.
 The Normal Lapse Rate 1 degree C per 160

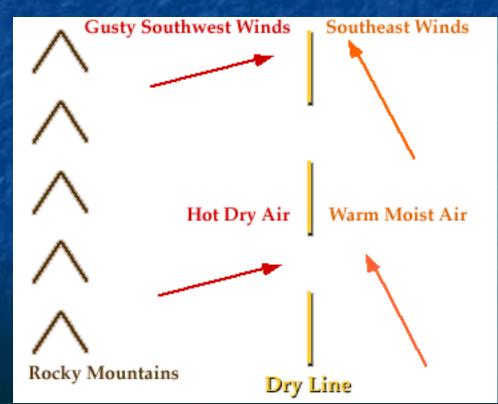
meters.

Dry and Moist Adiabatic Rates

Dry Adiabatic Rate (1 degree C per 100 meters) (Dry) When the air is saturated, it cools off slower (.6 degree C per 160 meters) (wet) Remember the Normal Lapse Rate is 1 degree C per 160 meters (Average)

Precipitation

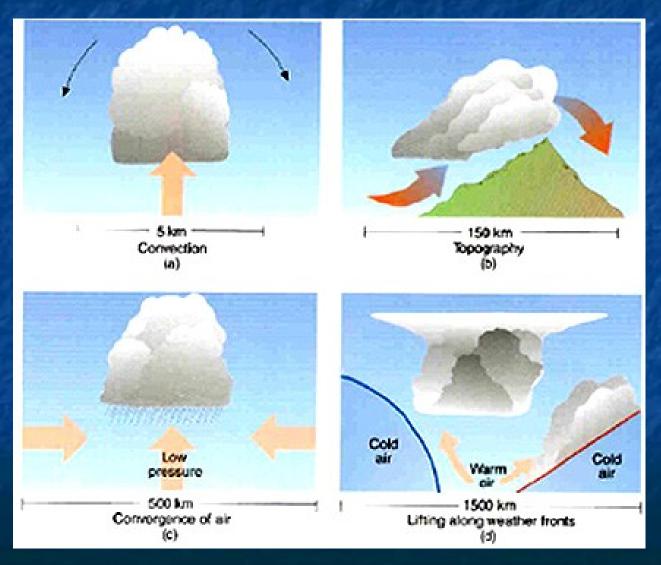
 Several Forms of Precipitation:


 Rain
 Rain
 Sleet
 Hail
 Snow

 Condensation Nuclei

Dry lines

A dry line is a boundary that separates a moist air mass from a dry air mass.



Dry lines

Drier air behind dry lines lifts the moist air ahead of it, triggering the development of thunderstorms along and ahead of the dry line (similar to cold fronts).

Cloud Formation

